X-ray Crystal Analysis of the Substrates of Aconitase. VII. The Structure of Lithium Ammonium Hydrogen Citrate Monohydrate*

BY E.J. GABE, J. PICKWORTH GLUSKER J.A. MINKIN AND A.L. PATTERSON The Institute for Cancer Research, Philadelphia, Pennsylvania 19111, U.S.A.

(Received 27 April 1966)

The structure of the diionized salt, lithium ammonium hydrogen citrate, Li(NH₄)H(C₆O₇H₅).H₂O, has been determined by the symbolic addition procedure. The data, collected by counter techniques, were refined by least squares to an *R* value of 0.043. The space group is P_{21}/a and the cell dimensions are $a=23\cdot195$, $b=6\cdot446$, $c=6\cdot508$ Å, $\beta=99\cdot02^{\circ}$, with four molecules in the unit cell. The ionization in this crystalline form occurs in the central and one of the terminal carboxyl groups. The backbone of the citrate ion is fully extended in a plane roughly perpendicular to that of the hydroxyl group and the central carboxyl group. The lithium ion is tetrahedrally coordinated by oxygen atoms in four different citrate ions, the ammonium ion is surrounded by oxygen atoms, ten at distances less than $3\cdot4$ Å and the water molecule participates in three hydrogen bonds.

Introduction

The space group, cell dimensions, densities and method of crystallization of the isomorphous pair of salts, lithium ammonium hydrogen citrate monohydrate and lithium rubidium hydrogen citrate monohydrate, have been described by Love & Patterson (1960). The determination of the structure of the ammonium salt, $Li(NH_4)H(C_6O_7H_5).H_2O$, was undertaken to establish which of the three carboxyl groups are ionized and to find if the stereochemistry is similar to that of previously determined monoionized and triionized citrates (Glusker, van der Helm, Love, Dornberg, Minkin, Johnson & Patterson, 1965; Johnson, 1965a). Both cations in this salt contain only atoms with low atomic numbers, permitting an accurate analysis to be made.

Experimental

Crystals of both salts can be grown as needles by layering a stoichiometric aqueous solution under ethanol (Love & Patterson, 1960). The space group is $P2_1/a$ and the cell dimensions of the ammonium salt,

Table 1. Cell data for Li(NH₄)H(C₆O₇H₅). H₂O

$$a = 23 \cdot 195 \pm 0.011 \text{ Å}$$

$$b = 6.446 \pm 0.002$$

$$c = 6.508 \pm 0.002$$

$$\beta = 99.02^{\circ} \pm 0.05^{\circ}$$

$$\lambda(\text{Cu } K\alpha_1) = 1.54050 \text{ Å}$$

$$\varrho(\text{obs}) = 1.617 \text{ g.cm}^{-3*}$$

$$\varrho(\text{calc}) = 1.611 \text{ g.cm}^{-3}$$

$$\mu = 13.4 \text{ cm}^{-1}$$

* Love & Patterson, 1960.

measured on a General Electric XRD-5 goniometer, are given in Table 1. The density shows that this salt crystallizes as a monohydrate.

Intensity data were collected on the diffractometer with the moving-crystal moving-counter technique $(\theta/2\theta \text{ scan})$ and Cu K α radiation. The crystal used, which was approximately a cube of side 0.22 mm, was cut from a needle with a solvent saw. For this crystal $\mu R \sim 0.18$ and therefore no corrections for absorption were thought to be necessary. 2102 reflections were accessible to measurement $(2\theta \le 165^\circ)$ and Lorentz and polarization corrections were applied to the data so obtained.

During the data reduction process the data were analyzed in the following way to determine whether the difference between the peak and background counts was significant.

If P is the peak count and mb the background count (where b is measured for 1/mth of the time that P was measured)

$$I = P - mb$$

$$\sigma^{2}(I) = \left(\frac{\partial I}{\partial P}\right)^{2} \sigma^{2}(P) + \left(\frac{\partial I}{\partial b}\right)^{2} \sigma^{2}(b) = P + m^{2}b$$

(since $\sigma^2(P) = P$, etc.). If *I* is significant at a certain level (arbitrarily chosen as 1%)

$$\frac{I^2}{\sigma^2(I)} = \frac{(P-mb)^2}{(P+m^2b)} \ge (2\cdot33)^2 \,.$$

If this condition is true the reflection is considered observed. On this basis 170 (8.1%) of the reflections were considered to be unobserved and these were given values of $I=(2\cdot33/3)/(P+m^2b)$, *i.e.* one-third of the value which is just significant. (It was subsequently shown from the structure refinement results that values of $|F_o|$ chosen for unobserved reflections in this way gave $\Sigma |F_o|/\Sigma|F_c| \simeq 1$.) Least-squares weights were calculated on a similar basis taking into account errors introduced by counting statistics, instrumental in-

1

^{*} Work supported by grants AM 02884 and CA 06927 from the National Institutes of Health, U.S. Public Health Service. A preliminary report on this work was presented at a meeting of the American Crystallographic Association, Gatlinburg, Tennessee, June 27–July 2, 1965 (Paper G5).

stability and filter factors (Johnson, 1965*a*). In the measurements *m* is chosen so that the length of time spent measuring the background is the minimum consistent with the condition that the variance of the background is always less than the variance of the peak, *i.e.* $m^2b < P$ (Mack & Spielberg, 1958).

Structure determination

The structure was solved by the symbolic addition procedure (Karle & Karle, 1963). The statistical averages and the distribution of the normalized structure factors are given in Table 2.

Table 2. Statistical data for the symbolic addition procedure

(a) Statistical averages for the normalized structure factors (E)

	$\langle E \rangle$	$\langle E^2-1 \rangle$
Lithium ammonium citrate	0.822	0.936
Theoretical: centrosymmetric crystal	0.798	0.968
noncentrosymmetric crystal	0.886	0.736

(b)	b) Distribution of structure factors						
		Experimental	Theoretical				
	<i>E</i> > 3	0.2 %	0.3 %				
	<i>E</i> > 2	4.2 %	5.0 %				
	E > 1	32.9 %	32.0 %				

3

288 terms with E greater than 1.5 were used in the sign determination procedure. Signs of all of these were obtained with the intermediate use of one letter which was quickly found to be minus. A superposition of sections in the resulting Fourier map using E values as coefficients is shown in Fig. 1. It was subsequently shown that all the signs indicated by the symbolic addition procedure were correct and all the highest peaks in the E-map represented atomic positions. The first structure factor calculation gave R=0.28 and the resulting Fourier map confirmed the atomic arrangement.

It was not possible at this stage or even after several cycles of refinement to distinguish between the ammonium ion and the water molecule. Therefore the h0l data for the rubidium salt were estimated visually from Weissenberg photographs, and the rubidium ion, which replaces the ammonium ion, was located from the $|F|^2$ map.

Refinement of the structure

The structure was refined by block-diagonal leastsquares and difference Fourier methods. In the leastsquares the quantity $\Sigma w(k|F_o| - |F_c|)^2$ was minimized. The weights, which are listed in Table 4, were calculated from the counting statistics as explained earlier.

Table 3. Final positional and temperature parameters

Positional parameters are given as fractions of cell edges. Anisotropic temperature factors are expressed as

 $\exp\left\{-\left(h^{2}b_{11}+2hkb_{12}+2hlb_{13}+k^{2}b_{22}+2klb_{23}+l^{2}b_{33}\right)\right\}.$

Isotropic temperature factors are of the form exp $(-B \sin 2\theta/\lambda^2)$ and are given in Å².

(As a is much greater than b or c the estimated standard deviations are difficult to present here. They are listed in Table 5 and indicate that, in Table 3, the last digit given for a parameter is only significant for x and b_{11} for the heavier atoms. All digits are listed because they were input to the final structure factor and angles and distances programs.)

	x	у	Z	b_{11}	<i>b</i> ₁₂	<i>b</i> ₁₃	b22	b23	b33
O(1)	0.3301	1.0476	0.6036	0.00116	-0.00054	0.00160	0.01757	-0.00686	0.01407
O(2)	0.4192	1.0486	0.5204	0.00088	-0.00062	0.00032	0.02005	-0.00480	0.01312
O(3)	0.3189	0.3124	-0·1139	0.00114	-0.00112	0.00206	0.01478	0.00908	0.02398
O(4)	0.4075	0.4345	-0.1265	0.00090	-0.00002	0.00150	0.01203	-0.00539	0.02244
O(5)	0.4299	0.9704	0.0092	0.00118	-0.00074	0.00082	0.01941	0.00998	0.02000
O(6)	0.4799	0.7387	0.2146	0.00059	0.00002	0.00063	0.01296	0.00163	0.01940
O (7)	0.3894	0.5862	0.3466	0.00088	-0.00006	0.00063	0.01302	0.00504	0.01267
C(1)	0.3661	1.0095	0.4802	0.00087	0.00026	0.00052	0.00898	-0.00154	0.01044
C(2)	0.3401	0.9183	0.2715	0.00070	0.00078	0.00017	0.01441	-0.00404	0.01134
C(3)	0.3754	0.7427	0.1914	0.00061	0.00006	0.00042	0.00867	-0.00038	0.00861
C(4)	0.3368	0.6556	-0.0026	0.00068	0.00021	0.00004	0.01113	0.00328	0.01213
C(5)	0.3584	0.4583	-0.0828	0.00084	0.00000	0.00020	0.01060	-0.00212	0.00939
C(6)	0.4334	0.8234	0.1344	0.00073	-0.00036	0.00054	0.00956	-0.00110	0.00918
O(W)	0.2833	0.4287	0.4027	0.00136	0.00164	0.00464	0.03019	0.02378	0.06041
N(1)	0.4996	0.6953	0.6917	0.00130	0.00020	0.00086	0.01277	0.00051	0.01421
			x	У	Z	В	Attached	to	
		Li	0.4429	0.1640	0.8024	1.91			
		H(1)	0.3046	0.8671	0.2950	3.9]	C(2)		
		H(2)	0.3343	1.0290	0.1631	2.6 ∫	C(2)		
		H(3)	0.2987	0.6265	0.0309	3.2	C(A)		
		H(4)	0.3339	0.7554	-0.1137	3.3 ∫	C(4)		
		H(5)	0.3528	0.5477	0.3701	5.1	O(7)		
		H(6)	0.3392	0.2105	-0.1533	6.1	O(3)		
		H(7)	0.5289	0.7775	0.6799	7.7]			
		H(8)	0.5151	0.5781	0.7070	6·5 [N(1)		
		H(9)	0.4730	0.6819	0.5887	8∙1 [1(1)		
		H(10)	0.4767	0.7674	0.7881	7·8 J			
		H(11)	0.2907	0.3166	0.4602	8∙0 }	$\Omega(W)$)	
		H(12)	0.2469	0.4640	0.3966	5·7 (0("	,	

Table 4. Observed and calculated structure factors and weights used in the least-squares refinement Each entry lists, in order, h, k, l, 10|F₀|, 10|F_c| and the weight. The values of 10|F₀| do not have an extinction correction applied to them. Unobserved reflections are denoted by an asterisk.

	н, о, о	н, 5, 0	н, 1, 1	н, 4, 1	H. 7. 1			
2 4 6 8 10 12 14 18 20 22 24 26 28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 2 & 100 - 116 & 3306 \\ 3 & 603 - 768 & 19 \\ 4 & 476 - 565 & 30 \\ 5 & 5 & -9 & 366 \\ 8 & 108 - 145 & 2122 \\ 138 - 145 & 2122 \\ 139 & 210 - 201 & 1133 \\ 9 & 210 - 201 & 1133 \\ 10 & 51 - 60 & 1703 \\ 11 & 377 & 394 & 135 \\ 12 & 138 & 138 & 1439 \\ 13 & 86 & 763 & 1763 \\ 13 & 264 & 218 & 2311 \\ 15 & 266 & -238 & 2311 \\ 17 & 223 - 2419 & 821 \\ 17 & 223 - 2419 & 821 \\ 17 & 223 - 2419 & 821 \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n, 4, 4 4 -25 10 10 21. -24 24 19 549 -23 89 19 132 -24 16 70 107 -10 16 70 107 -10 167 -65 1956 -10 272 -65 1956 -17 179 -76 911 -16 330 336 503 -14 126 270 188 -13 259 302 1168 -13 259 302 1168 -13 15 542 716	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	μ 0, 3 -26 6.71 22.15 50.13 -24 22.15 50.13 21.25 50.13 -24 22.15 19.13 23.13 21.25 23.13 -20 29 29 29 24.405 -16.67 -6.74 126.655 -14 285 280 665.5 -10.1355 13.35 13.95
123456789001111213	155 -176 733 252 -265 773 252 -265 773 252 -265 773 217 -223 393 217 -223 393 217 -233 395 155 168 515 156 185 515 156 185 515 157 -31 1425 37 -47 1372 320 -313 177 320 -313 177	17 226 18 548 18 120 - 124 1257 19 7 10 49* 20 66 - 68 1597 21 45 41 1709 23 39 4 12955 H. 6. 0 0 65 -65 1138 1 68 65 -65 1138 1 68 65 -65 1138 3 32 34 609 3 4 75 9 915	18 76 -76 1768 19 8 -19 36 20 258 -261 653 21 133 131 1072 22 31 -33 466 23 113 120 1136 24 314 -30 796 25 129 -115 126 57 29 -115 126 57 29 -115 126 57 -53 3161 н, 2, 1 -28 36 -33 2413	-1-9 36 -34(1231) -2 205 -226 -9126 -2 7 -265 9126 -7 87 -265 9126 -7 87 -265 9126 -7 87 -265 9126 -9 9133 1278 -5 201 -193 1010 -3 170 -195 1601 -3 170 -173 1144 -1 23 8 4653 0 25 30 1454 -1 359 1056 -3 51 350 1056 -3 51 1056	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-10 461 480 '96 -9 49 -17 1419 -7 165 -128 1626 -7 165 155 1434 52 -6 135 -128 1626 -4 342 -334 55 -6 136 155 143 -4 348 356 160 -7 3386 311 186 -6 13 367 -6 30 - 6 680 773 15 - 6 13 67 - 2 28 237 317 - 3 218 -221 1122 - 4 2277 - 2569 231	10 32 14 38 10 20 87 83 656 20 87 83 656 83 656 21 10 16 32 30 26 2661 23 30 26 2661	0 112 -111 2098 2 554 -587 22 4 326 355 175 9 6 317 333 175 9 10 152 277 1186 12 87 -77 1131 14 286 -299 575 16 77 -70 1010 18 250 253 667 20 171 176 1044 22 89 -83 1451 24 6 - 6 7 +, 1, 3
15 16 178 19 20 21 22 23 24 25 26 278 29	106 -185 1061 97 -105 1178 108 -117 1155 184 189 895 176 179 807 184 189 895 184 189 895 184 198 807 180 -117 807 183 180 979 109 -106 1310 56 -66 1176 49 50 1769 35 -29 3508	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H, 8, 1 -6 16 22 336 -5 21 25 659 -4 49 53 1375 -1 66 -63 2006 -2 56 -55 2056 -7 56 -55 2056 0 77 -52 356 2 62 -36 6 17 321 4 45 46 1060 5 58 61 1711 - 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-16 113 -111 1238 -15 130 -103 11248 -14 227 -23 13063 -12 132 -119 1307 -11 166 -167 925 -10 6 -13 38 -9 76 -65 923 -7 76 80 1021 -7 76 80 1021 -7 76 80 1021 -7 76 80 1021 -3 65 -45 926 -3 -5 95 -75 1021 -3 -5 -5 -75 1021 -3 -5 -75 1021 -3 -5 -75 1021 -3 -11 -115 1081	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
01234567890112	H, 2, 0 402 457 42 179 185 1687 134 -367 192 194 -195 1476 625 -777 18 192 203 419 55 662 2025 195 -186 369 195 -186 369 195 -186 1507 74 -70 1817 183 1507	H, 7, 0 1 $136 - 133 1243$ 3 $157 - 123 1243$ 4 $157 - 129 728$ 4 $562 - 651 1916$ 6 $822 - 79 1351$ 7 $61 57^{*}$ 8 $61 - 631 220$ 9 $154 - 154 1339$ 9 $154 - 154 1339$ 11 $15 - 15 - 1375$ 12 $359 - 50775$	$\begin{array}{c} -11 \\ 204 \\ 197 \\ 1082 \\ -9 \\ 435 \\ 445 \\ 445 \\ 445 \\ 445 \\ 445 \\ 445 \\ 445 \\ 445 \\ 445 \\ 446 \\ 444 \\ 31 \\ -4 \\ 459 \\ 484 \\ 31 \\ -4 \\ 459 \\ 484 \\ 31 \\ -4 \\ 459 \\ 484 \\ 31 \\ -4 \\ 459 \\ 484 \\ 31 \\ -4 \\ 473 \\ 494 \\ 30 \\ -1 \\ 274 \\ -2 \\ 473 \\ 494 \\ 30 \\ -1 \\ 274 \\ -2 \\ 473 \\ 494 \\ 30 \\ -1 \\ 274 \\ -2 \\ 473 \\ 494 \\ 30 \\ -1 \\ 274 \\ -2 \\ 473 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -$	22 31 -33 563 23 65 -65 1989 24 25 -36 1926 +, 5, 1 -23 105 -108 1926 +, 5, 1 -23 105 -108 1922 -30 29 -30 881 -19 6 -1 62 -18 77 80 1261 -17 37 37 939 -16 44 -43 855 -15 98 -1028 855	-26 161 172 1420 -26 102 -102 1587 -24 218 213 842 -22 184 188 923 -72 184 188 923 -73 184 188 923 -74 18 213 842 -74 218 -234 783 -16 129 -118 1265 -12 243 244 830 -10 212 -3 285 -8 774 -925 12 -6 578 -546 21 -4 630 -770 18 -2 101 92 301	21 312 406 21 313 230 857 23 313 230 867 24 56 65 22 25 56 65 22 - 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-12 214 210 939 -11 76 -73 1649 -10 192 -132 1107 -5 227 220 218 -6 220 -228 1007 -7 55 -51 1919 -7 55 -51 1919 -7 55 -50 -51 1919 -3 188 190 1331 -3 188 190 1331 -1 6 11 657 0 115 80 2003 1 298 232 219 3 266 -261 120
145 145 16 17 189 20 212 223 225 227 28	$\begin{array}{c} 137 \\ 132 \\ 132 \\ 133 \\ 146 \\ 1263 \\ 146 \\ 1263 \\ 1263 \\ 146 \\ 1263 \\ 12$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 311 & -328 & 1398 \\ 6 & 188 & -192 & 1364 \\ 7 & 111 & -101 & 2068 \\ 8 & 37 & -24 & 1629 \\ 9 & 45 & -34 & 2061 \\ 1 & 29 & -131 & 1521 \\ 1 & 2 & 90 & -84 & 14523 \\ 1 & 1 & 37 & -131 & 1521 \\ 1 & 2 & 90 & -84 & 14523 \\ 1 & 1 & 37 & -136 & 1429 \\ 1 & 37 & -136 & -136 \\ 1 $	-13 147 -147 7664 -12 51 46 961 -12 51 46 961 -14 221 -7 76 76 76 9969 -7 226 223 96023 -7 4 968 -956 9023 -7 4 968 -956 9023 -7 179 975 -2 120 118 1146 -1 65 64 1034 0 219 226 834 -5 59 52 336	0 200 197 433 2 656 -198 1326 4 2056 -198 1326 8 146 -195 0151 10 311 -150 1631 12 34 24 964 14 215 210 8+8 16 32 42 740 18 38 44 728 22 49 -28 700 24 39 -26 976 26 69 -66 2407 +, 1, 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 50 -59 1450 17 50 -50 1453 16 80 -60 2003 19 10 5 253 20 56 58 2565 21 22 22 122 m, 6, 2 -19 60 -58 2814 -16 55 25 58 2260 -16 51 -55 6226 -17 50 -58 2814 -16 51 -55 6226 -17 50 -58 2814 -17 50 -59 1450 -17 50 -59 1450 -17 50 -59 1450 -17 50 1450 -17 500 -17 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
12345678901123	H, 3, 0 372 -389 144 281 291 230 227 240 306 113 119 1970 245 -2453 272 132 134 1726 207 -212 324 80 -76 1698 96 93 1596 170 170 1193 34 27 858 39 -166 1388	-26 22 -58 1579 -26 22 -780 1579 -26 22 -780 565 -780 565 -780 565 -781 565 -781 565 -781 565 -781 565 -781 565 -781 565 -781 565 -771 783 565 -781 565 -771 783 565 -781 565 -781 575 -781 575	20 1/10 1/1 5/ 5/18 22 44 24 3 844 23 28 31 609 24 111 -112 14/56 25 93 -91 1521 26 6 6 6 57 27 24 -27 1591 H, 3, 1 -27 5 6 96* -26 74 75 2200 -25 7 7 49 -26 4 50 1114 -23 87 88 1387	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-12 21 14 336 -11 65 72 1042 -10 19 -20 291 -9 21 -23 407 -9 222 231 793 -7 221 109 327 -7 121 109 329 -7 121 109 329 -7 11 109 329 -7 211 650 -3 76 -75 1056 -3 76 -75 1056 -3 89 88 986 -1 172 152 880 -1 172 152 880 -1 057	20 35 13 1077 21 7 12 497 22 68 65 1386 23 101 - 100 1514 24 6 3 67 25 46 47 2655 m, 2, 3 -28 19 -18 2532 -26 22 23 925 -26 22 23 925 -26 22 -26 613 -24 130 -130 1273 -23 142 -17 133
1456789012234567 22234567	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -22 & 115 & -110 & 1235 \\ -20 & 122 & 120 & 1055 \\ -20 & 223 & 220 & 7733 \\ -19 & 107 & -180 & 0335 \\ -19 & 197 & -180 & 0335 \\ -19 & 197 & -180 & 035 \\ -116 & 61 & -65 & 1141 \\ -15 & 170 & 173 & 996 \\ -13 & 7 & -6 & 49^{\circ} \\ -13 & 7 & -6 & 49^{\circ} \\ -13 & 7 & -706 & 3756 \\ -10 & 214 & -236 & 9751 \\ -10 & 214 & -236 & 9751 \\ -9 & 253 & 262 & 1542 \\ -7 & 23 & -20 & 754 \\ -7 & -23 & -20 & 754 \\ -7 & -20 & -7 & -20 & 754 \\ -7 & -20 & -7 & -20 & 754 \\ -7 & -20 & -7 & -20 & 754 \\ -7 & -20 & -7 & -20 & 754 \\ -7 & -20 & -7 & -20 & -7 \\ -7 & -20 & -7 & -7 & -7 \\ -7 & -7 & -7 & -7 & -7$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-21 148 -183 1956 -20 163 -172 919 -19 4-7 48 831 -18 29 -15 360 -17 194 -99 1107 -16 84 87 1186 -14 131 -134 1117 -16 184 87 1186 -14 131 -134 1150 -12 249 -254 768 -12 249 -254 768 -10 346 -352 503 -9 54 -52 1405 -8 116 -113 1464 -7 109 100 1700
012345678901123	n, q. 0 278 284 212 17 4296 1107 192 190 1107 194 -28 1108 101 97 94 1476 43 -50 1109 158 175 174 319 37 37 -36 806 49 28 -31 553 11440	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -6 \\ 310 \\ -310 \\ -310 \\ -177 \\ -128 \\ -177 \\ -128 \\ -177 \\ -128 \\ -177 \\ -128 \\ -177 \\ -128 \\ -177 \\ -28 \\ -177 \\ -28 \\ -177 \\ -28 \\ -177 \\ -28 \\ -177 \\ -28 \\ -$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 375 408 45 3 509 -546 83 4 258 248 271 5 487 578 288 6 63 59 1905 8 10 258 248 171 9 124 120 1689 9 124 120 1689 9 125 284 197 11 123 -114 1445 12 187 -124 105 974 13 189 -201 974 15 216 2217 809 15 216 226 295	-25 4 2 151* -24 13 14 346 -23 29 28 1129 -22 85 86 1629 -20 86 -91 199 -19 20 -50 134 -18 71 -68 314 -17 104 -105 1174 -16 118 116 1101 -15 8 3 36* -14 97 96 1149 -13 266 290 382 -11 79 61 109 882	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
14 15 16 17 18 19 21 22 23 24 25	123 241 747 97 97 1198 95 -101 1043 184 -189 281 141 -421 1643 141 -421 1643 141 -421 1643 141 -421 1643 141 -41 36 1231 29 28 1085 6 9 67 65 61 2736	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 10 \\ 276 \\ 270 \\ 71 \\ 155 \\ 220 \\ 320 \\ 320 \\ 135 \\ 143 \\ 135 \\ 143 \\ 135 \\ 143 \\ 135 \\ 143 \\ 135 \\ 143 \\ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-10 132 -123 1086 -0 152 -124 1086 -0 152 -124 108 -0 152 -145 1078 -1 136 -145 1078 -4 165 -145 1105 -4 165 -1452 1105 -4 165 -1452 1105 -3 61 -50 1342 -2 198 -202 1020 -1 128 123 1252 1 28 123 1252 1 292 86 1343 3 137 -141 1261	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

4

£

Table 4 (cont.)

į

369

The scattering factors for O, N, C and Li⁺ were taken from *International Tables for X-ray Crystallography* (1962). For oxygen atoms in the ionized carboxyl groups the average of scattering factors for O and O⁻ were used. For hydrogen the values given by Stewart, Davidson & Simpson (1965) were used. Unobserved reflections were included in the refinement and 70% of the indicated shifts were used in each cycle.

Three cycles of isotropic refinement with the heavier atoms alone reduced R to 0.18 and then three cycles of anisotropic refinement gave R=0.108. At this point a difference map showed all the hydrogen atoms. Refinement was continued with isotropic temperature factors for the lithium ion and the hydrogen atoms until the shifts were all less than half the estimated standard deviations of the parameters. C(3) is effectively isotropic using the criterion of Kraut & Jensen (1963) although anisotropic parameters were used in the final structure factor calculations. At this point R was 0.055 for all data, 0.052 for observed data alone and 0.043 for all data after an extinction correction,

$$|F'_{o}| = \frac{|F_{o}|}{\sqrt{1 - k|F_{o}|^{2}}},$$

was applied with $k = 5.4 \times 10^{-5}$. The final positional and temperature factor parameters listed in Table 3 were used to compute the final structure factors given in Table 4. The estimated standard deviations are listed in Table 5. The principal axes of the anisotropic temperature factors and their directions cosines relative to the orthonormal E system (Patterson, 1952) are listed in Table 6. The γ matrix is

$$\begin{bmatrix} 23.18126 & 0 & -0.79815 \\ 0 & 6.44600 & 0 \\ -0.79815 & 0 & 6.45887 \end{bmatrix}$$

Table 5. Estimated standard deviations

(a) Positional parameters O(1) - O(7)0.0013 Å C(1)-C(6) 0.0016 N(1) 0.0016 O(W)0.0022 Li 0.0030 H(1)-H(12) 0.033 (b) Temperature parameters O(1) - O(7)0.048 Å² C(1) - C(6)0.052 N(1)0.057 O(W)0.098 Li 0.045 H(1)-H(12) 0.84 (c) Bond lengths 0----0 0.0018 Å 0-C, 0----N 0.0021 C-C 0.0023 Li----0 0.0033 H-C, H-O, H-N 0.033 Н----Н 0.047

Table 5 (cont.)

(d)	Bond angles	
	0-C-C, C-C-C	0.12
	H-O-C, H-C-C	1.8
	H-N-H, H-O-H, H-C-H	4
	O-Li-O	0.15

so that E_2 coincides with b and E_1 and E_3 lie in the ac plane. A stereodiagram of the thermal ellipsoids is shown in Fig. 2 (Johnson, 1965b).

Table 6.	Principal	axes a	of ti	hermal	ellipsoids
----------	-----------	--------	-------	--------	------------

1.

1

1.

m • • • • • •

R

0(1)		•1	12	13
O(1)	3·93A2	0.299	-0.734	0.610
	2.28	0.881	0.457	0.118
	1.29	-0.366	0.502	0.794
		0 500	0 502	0.764
O(2)	3.75	0.096	- 0.893	0.439
	2.07	0.758	-0.221	0.614
	1.57	0.645	0.391	0.656
			0 571	0.020
O(3)	5.08	0.273	-0.512	0.814
	1.98	0.955	0.039	-0.205
	1.52	0.119	0.858	0.500
		0117	0.020	0.200
O(4)	4.11	0.130	-0.382	0.915
	1.91	0.782	0.607	0.1/2
	1.43	-0.610	0.607	0.143
	- 10	0 010	0.031	0.219
O(5)	5.03	-0.181	0.704	0.687
	2.59	0.894	-0.173	0.412
	1.38	0.410	0.680	0.413
	1 50	0410	0.09	-0.298
O(6)	3.28	0.033	-0.234	- 0.072
	2.09	-0.003	0.072	-0.972
	1.22	0.000	0.011	-0.233
	1 22	0.333	0.011	0.031
O(7)	2.97	0.059	-0.724	0.697
• •	1.86	0.971	-0.118	-0.007
	1.25	-0.231	-0.118	0.208
	1 23	-0.231	-0.0/9	0.67/
C(1)	1.96	-0.640	-0.556	0.520
	1.81	0.704	- 0.140	0.000
	1.27	-0.307	-0-149	0.694
	1 27	-0.307	0.919	0.48/
C(2)	3.07	0.336	0.701	0.512
	1.52	0.553	0.274	-0.312
	1.20	0.762	0.547	0.787
	1 20	0 702		-0.346
C(3)	1.50	0.086	0.778	-0.622
	1.39	0.390	0.548	0.740
	1.25	0.917	-0.207	0.740
	1 20	0 717	-0.307	-0.236
C(4)	2.60	-0.291	-0.615	0.733
-	1.42	0.700	-0.659	- 0.275
	1.35	0.652	0.422	-0.273
	1.00	0.02	0.432	0.075
C(5)	2.08	-0.400	-0.706	0.584
	1.76	0.903	-0.413	0.110
	1.28	0.158	-0.413	0.002
	- 20	0 1 5 0	0.375	0.903
C(6)	1.85	-0.515	0.704	-0.480
	1.43	-0.661	0.037	0.750
	1.33	0.546	0.700	0.730
		0 540	0.103	0.446
N(1)	2.77	0.930	0.200	0.300
	2.31	-0.345	0.100	0.010
	2.09	0.125	_0.041	0.919
		0123		0.246
O(W)	12.30	-0.150	-0.477	-0.866
	2.93	-0.331	0.850	-0.410
	2.06	0.032	0.000	-0.410
		0 954	0.770	-0.792

In this analysis and that of lithium glycolate (Gabe & Taylor, 1966) the peak height of the lithium ion is as high as that of some of the heavier atoms while the temperature factor of the lithium ion is similar to that of the rest of the structure. This is presumably because the scattering factors of positively charged ions fall off more slowly than those for the non-ionized atoms, giving rise to a very sharp peak. The electron count is, however, approximately 2 as expected.

Description of the structure

The bond lengths and angles in the citrate ion are shown in Fig.3. These show that it is the central carboxyl group and one of the terminal carboxyl groups which are ionized in this crystal. The fact that the terminal carboxyl group O(4)C(5)O(3) is not ionized is shown by the distances 1.219 and 1.306 Å for C(5)O(4) and C(5)O(3) and also by the presence of the hydrogen

Fig. 1. Superposition of sections in the E map (viewed down the c axis).

1

atom H(6) at 0.87 Å from O(3). This result is in agreement with a reinterpretation of the nuclear magnetic resonance data of Loewenstein & Roberts (1960) by Martin (1961). However, those measurements were made on solutions and the present study is of a particular crystalline form of the citrate.

The carbon-carbon bond lengths are shorter near the terminal carboxyl groups than near the central carboxyl group as found in other citrates. The distances are 1.516, 1.499 for C(1)C(2), C(4)C(5) compared with 1.535 for both C(3)C(2) and C(3)C(4). The distance C(3)C(6) to the central carboxyl group is 1.541 Å $(\pm 0.002$ Å), a value which is lower than that found for monoionized sodium dihydrogen citrate $(1.556 \pm 0.005$ Å) or triionized magnesium citrate $(1.555 \pm 0.002$ Å).

The equations of planes through selected portions of the citrate ion are listed in Table 7. The carbon chain of C(1) to C(5) is fully extended with the terminal carboxyl groups turned out of the plane through these five carbon atoms. The central carboxyl group and the hydroxyl group are in a plane almost perpendicular to the plane of the backbone. The hydroxyl oxygen, O(7), is only 2.584 Å from one of the oxygen atoms [O(6)] of the central carboxyl group, a distance which is consistently short in the citrates (*e.g.* 2.638 Å in sodium dihydrogen citrate and 2.595 Å in magnesium citrate).

The lithium and ammonium ions lie near $x = \frac{1}{2}$ and 0 while the water lies near $x = \frac{1}{4}$ and $\frac{3}{4}$. The citrate ions pack between these as shown in Fig.4. The marked cleavage of the crystal perpendicular to the *a* axis is explained by the loose packing around the water molecule.

There are eight different hydrogen atoms available for hydrogen bond formation, two in the citrate ion, two in the water molecule and four in the ammonium ion. The hydrogen bonds formed by these are listed in Table 8. There is a very short hydrogen bond, 2.552 Å, between two citrate ions with O(1) as acceptor from

Table 7. Planarity of groups in the citrate ion

The equations are expressed in the form

$$lX+mY+nZ=D$$

where distances are expressed in Å and X, Y, Z are coordinates in the E system.

(a) Equations of planes

Designations and description

of planes	Atoms in plane	l	m	n	D
(1) Center backbone	C(2)C(3)C(4)	-0.4754	-0.6541	0.5883	- 6.6451
(2) Full backbone	C(1)C(2)C(3)C(4)C(5)	-0.5914	-0.6007	0.5379	- 7.2807
(3) Hydroxyl	O(7)C(3)C(6)	-0.0464	0.6954	0.7171	3.6041
(4) Ionized end carboxyl	O(1)O(2)C(1)C(2)	0.1113	-0.9180	0.3807	-4.0130
(5) Central carboxyl	O(5)O(6)C(6)C(3)	-0.0141	0.6472	0.7622	3.6917
(6) Non-ionized end carboxyl	O(3)O(4)C(5)C(4)	0.1914	-0.3233	0.9267	-0.1345

(b) Deviations Δ (Å) from these planes

	⊿(1)		⊿(2)		⊿(3)		⊿(4)		⊿ (5)		⊿(6)
C(2)	0.000	C(1)	0.091	O(7)	0.000	O(1)	-0.004	O(5)	0.000	O(3)	-0.001
C(3)	0.000	C(2)	-0.015	C(3)	0.000	O(2)	-0.004	O(6)	0.000	O(4)	-0.002
C(4)	0.000	C(3)	-0.148	C(6)	0.000	C(1)	0.011	C(6)	0.001	C(5)	0.004
		C(4)	-0.030			C(2)	-0.003	C(3)	0.000	C(4)	-0.001
		C(5)	0.100								
C(1)	0.189			O(5)	0.080			O(7)	0.100	H(6)	0.026
C(5)	0.236			O(6)	-0.082			H(5)	0.089	(-)	
C(6)	- 1.245	C(6)	-1.505	H(5)	-0.003			(-)			
O (1)	0.958	O(1)	0.939								
O(2)	-0.418	O(2)	-0.653								
O(3)	1.188	O(3)	1.113								
- < · ·		- 1.1									

(c)	Angl	es b	etween	these	planes
-----	------	------	--------	-------	--------

-0.398

-2.348-1.087

1.148

0.722

0.701

1.829

1.219

-0.853

-0.852

O(4) O(5)

Ō(6)

0(7)

H(1)

H(2)

H(3)

H(4) H(5)

H(6)

O(4) O(5) O(6)

O(7)

H(1)

H(2)

H(3)

H(4)

H(5)

H(6)

-0.663

-2.519

-1.518

0.873

0.781

0.787

0.753

1.632

1.065

-0.814

Pla	anes	Angle	
(2)	(5)	89°16′	Full backbone/Central carboxyl
(2)	(4)	46 20	Full backbone/Ionized end carboxyl
(2)	(6)	35 25	Full backbone/Non-ionized end carboxyl
(3)	(5)	4 13	Hydroxyl/Central carboxyl
(1)	(2)	7 54	Center backbone/Full backbone
(1)	(3)	89 23	Center backbone/Hydroxyl

Table 8. Hydrogen bonds

Donor (D) (at x, y, z)	Acceptor (A)	DA (Å)	H— <i>D</i> (Å)	H <i>A</i> (Å)	∠ <i>A</i> H—D (°)	∠H— <i>DA</i> (°)
O(7)—H(5)O(<i>W</i>)	x, y, z	2.739	0.92	1.83	171	6
O(3)—H(6)O(1)	x, y-1, z-1	2.552	0.87	1.88	132	33
N(1)—H(7)O(2) N(1)—H(8)O(6) N(1)—H(9)O(7) N(1)—H(10)O(5)	1-x, 2-y, 1-z 1-x, 1-y, 1-z x, y, z x, y, 1+z	2·999 2·887 3·205 3·328	0·87 0·84 0·84 1·00	2·21 2·10 2·38 2·33	149 156 167 173	22 17 10 5
O(W)-H(11)O(1) O(W)-H(12)O(1)	$x, y-1, z \\ \frac{1}{2} - x, y - \frac{1}{2}, 1 - z$	2·912 2·734	0·82 0·87	2·11 1·87	167 177	10 2

Distances					Oxygen
		NO	НО	∠N—HO	Parameters
N(1)H(7)	O(2)	2·999 Å	2·21 Å	149°	1-x, 2-y, 1-z
N(1)	O(5)	3.179	2.65	120	
N(1)H(8)	O(6)	2.887	2.10	156	1-x, 1-y, 1-z
N(1)	$\mathbf{O}(7)$	3.191	2.53	137	, ,,
N(1)	O(4)	3.382	3.03	108	
N(1)H(9)	O(7)	3.205	2.38	167	X. V. 7
N(1)	0(6)	3.079	2.49	128	,), 2
N(1)	O(2)	3.042	2.68	108	
	0(2)	2 2 2 2	2 00	100	
N(1)H(10)	0(5)	3.328	2.33	1/3	x, y, 1+z
N(1)	O(4)	3.095	2.79	98	
Angles					
H(7)N(1)H(8)	104°				
H(7)N(1)H(0)	118				
H(7)N(1)H(10)	106				
H(8)N(1)H(0)	100				
U(2)N(1)U(10)	104				
$\Pi(0) \Pi(1) \Pi(10)$	127				
H(9)IN(1)H(10)	99				

Table 9. Coordination around the ammonium ion

Table 10. Coordination around the lithium ion

```
Li-O Distances
```

	Oxygen param	eters		Oxygen function in carboxyl group
Li-O(5)	x y-1	1 + z	1·894 Å	Ionized
O(6)	1 - x 1 - y	1 - z	1.917	Ionized
O(2)	x y-1	Ζ	1.977	Ionized
O(4)	x y	1+z	2.012	Carbonyl
O–O Dista	nces		O-Li-O angles	
O(6)O(4) 2 ·978 Å		O(6)-Li-O(4)	98·5°
O(6)O(2	ý <u>3</u> ·011		O(6) - Li - O(2)	101.3
O(5)O(4	3.139		O(5)-Li-O(4)	107.0
O(5)O(2	3.192		O(5) - Li - O(2)	111.1
O(5)O(6	3.295		O(2)-Li-O(4)	118-4
O(2)O(4) 3.426		O(5)-Li-O(6)	120.7

Fig. 3. (a) Bond lengths and (b) angles in the citrate ion.

H(6)O(3). O(1) is also the acceptor of two other hydrogen bonds, both from water molecules, and it should be noted that the distance O(1)C(1), 1.270 Å, is longer than other similar distances in the citrate ion.

The marked anisotropy of the water molecule shown in Table 6 is probably an indication of disorder. The water molecule is surrounded by four oxygens, forming hydrogen bonds to three of them (see Table 8) and packing against O(3). The effect of the disorder, assuming two possible sites, is to shorten the hydrogen bond to O(7) in one position and to shorten the longer of the two hydrogen bonds to O(1) in the other position. The distances and angles given in Table 8 are for an average position of the water molecule.

The coordination around the ammonium ion is described in Table 9. Four citrate ions are gathered round the ammonium ion at minimum distances of 2.887, 2.999, 3.042 and 3.095 Å and distances to other atoms in these citrate ions account for the ten closest oxygen distances as shown in Fig. 5.

The lithium ion is surrounded by four oxygen atoms in four different citrate ions. The distances of the lithium ion to the faces of the tetrahedron range from 0.56-0.75 Å. Table 10 contains a list of the distances and angles in the coordination tetrahedron. O(1), which takes part in three hydrogen bonds, is the only oxygen atom without an attached hydrogen atom which does not coordinate to the lithium ion. There is one ring formed by chelation which includes the short hydrogen bond [Li $O(4)C(5)O(3)H(6)\cdots O(1)C(1)O(2)$] and one ring involving two lithium ions [Li O(5)C(6)O(6)Li'-O(5')C(6')O(6')] (Fig.4).

Computations

All computations were done on an IBM 1620 computer with programs written in this laboratory. For a list of these programs see Johnson (1965*a*). The Symbolic Addition Procedure Program (ICR No.15) was written by E.J.Gabe and M.R.Taylor and the Data Reduction Program (ICR No.16) by E.J.Gabe.

We are grateful to Dr M.R. Taylor for assistance in the data collection and to Dr C.K. Johnson for providing the diagram of the stereo pair in Fig.2.

References

GABE, E. J. & TAYLOR, M. R. (1966). Acta Cryst. 21, 418.
GLUSKER, J. P., VAN DER HELM, D., LOVE, W. E., DORNBERG, M. L., MINKIN, J. A., JOHNSON, C. K. & PATTERSON, A. L. (1965). Acta Cryst. 19, 561.

Fig.4. General packing of the molecule.

Fig. 5. Packing around the ammonium ion.

- International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965a). Acta Cryst. 18, 1004.
- JOHNSON, C. K. (1965b). ORTEP: A Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations. ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- KARLE, I. L. & KARLE, J. (1963). Acta Cryst. 16, 969.
- KRAUT, J. & JENSEN, L. H. (1963). Acta Cryst. 16, 79.
- LOEWENSTEIN, A. & ROBERTS, J. D. (1960). J. Amer. Chem. Soc. 82, 2705.
- LOVE, W. E. & PATTERSON, A. L. (1960). Acta Cryst. 13, 426.
- MACK, M. & SPIELBERG, N. (1958). Spectrochim. Acta, 12, 169.
- MARTIN, R. B. (1961). J. Phys. Chem. 65, 2053.
- PATTERSON, A. L. (1952). Acta Cryst. 5, 829.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.

ļ